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Abstract 
 

This report presents the development of Image Processing and Application, a comprehensive 

web-based image processing platform that integrates classical computer vision techniques with 

modern deep learning. The application implements many image processing functions across 

three major modules: histogram analysis and filtering, edge detection and segmentation, and 

geometric transformations.  

The system is built using the Python Flask framework with OpenCV for image processing 

operations and YOLO v11 for AI-powered object detection. The web interface provides an 

intuitive user experience with real-time processing, visual feedback, and comparison tools. The 

application is deployed on a production server with PM2 process management and Nginx reverse 

proxy, serving users at https://stellarion.app and http://139.59.113.53:5000. 
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Project Overview 
 

Background 

 
Digital image processing is a fundamental field in computer science with applications spanning 

medical imaging, autonomous vehicles, surveillance systems, and multimedia. Understanding 

both classical algorithms and modern deep learning approaches is essential for computer vision 

practitioners. 

 

Motivation 

 
Traditional image processing education often lacks hands-on, interactive platforms for 

experimenting with algorithms. This project addresses this gap by providing: 

 

1.​ Interactive Learning Environment - Real-time visualization of algorithm results 

2.​ Comprehensive Coverage - From basic histogram operations to advanced transformations 

3.​ Modern Integration - Classical CV techniques combined with deep learning 

4.​ Accessibility - Web-based platform accessible from any device 

 

Scope 

 
The project encompasses: 

 

●​ 35+ image processing functions organized into three student modules 

●​ Classical algorithms: Histogram equalization, spatial/frequency filtering, edge detection 

●​ Advanced techniques: Affine/perspective transforms, image registration, morphological 

operations 

●​ Deep learning: YOLO v11 for real-time object detection 

●​ Production deployment: Cloud-hosted web application with SSL encryption​
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Project Objectives 

 

This project involved the development and production deployment of a comprehensive Image 

Processing Platform with integrated Deep Learning capabilities. 

 

The platform provides a suite of image manipulation tools, including: 

●​ Histogram Analysis: Equalization and gray-level transformations. 

●​ Domain Filtering: Spatial (mean, median) and frequency domain (FFT) filtering. 

●​ Image Analysis: Edge detection (Sobel, Canny) and various segmentation algorithms. 

●​ Geometric Transforms: Operations with interpolation. 

 

A key feature is the integration of YOLO v11 for real-time object detection, supporting 80+ 

COCO classes with adjustable confidence thresholds and bounding box visualization. 

The application is delivered through a responsive Tailwind CSS web interface featuring real-time 

previews and zoom. The entire system is deployed on DigitalOcean, managed by PM2, served 

via an Nginx reverse proxy, and secured with SSL/TLS. 
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Methodology 

 

Development Approach 

 

The project followed an Agile development methodology, structured in three key phases: 

1.​ Core Development: Focused on initial planning, technology stack setup, and the 

implementation of all fundamental image processing modules (histogram analysis, 

filtering, edge detection, segmentation, and geometric transforms). 

2.​ Integration & Enhancement: Involved integrating the YOLO v11 model for object 

detection. The UI was simultaneously enhanced with features like zoom, comparison 

modals, and descriptive text, alongside performance optimizations. 

3.​ Production Deployment: Consisted of deploying the application on a DigitalOcean server. 

This included configuring PM2 for process management, setting up an Nginx reverse 

proxy, securing the site with SSL/TLS, and conducting final testing. 
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Component Descriptions 

 

1. Client Layer 

●​ Technology: HTML5, Tailwind CSS, JavaScript ES6+ 

●​ Functionality: User interface, file upload, filter selection, image display 

●​ Key Features: Responsive design, real-time feedback, Chrome-style zoom 

2. Nginx Reverse Proxy 

●​ Purpose: Load balancing, SSL termination, static file serving 

●​ Configuration: Port 443 (HTTPS) → 5000 (Flask) 

●​ Benefits: Security, performance, scalability 

3. Application Layer (Flask + PM2) 

●​ Flask: Web framework handling HTTP requests/responses 

●​ PM2: Process manager ensuring high availability 

●​ Routes: /upload_image, /apply_filter, /detect_objects 

4. Processing Layer 

●​ Student 1 - AUNG MYINT MYAT: 10 histogram & filtering functions 

●​ Student 2 - SWAN HTET: 12 edge detection & segmentation functions 

●​ Student 3 - ARKAR PYAE PHYO: 15 geometric transformation functions 

5. Storage Layer 

●​ Input Directory: Temporary uploaded images 

●​ Output Directory: Processed results 

●​ Model Storage: YOLO v11 weights (6.3MB) 
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Python

Implementation Details 
 

Module 1: Image Enhancement (AUNG MYINT MYAT) 

Student 1: Histogram & Filtering 

A. Histogram Equalization 

 
Algorithm: 
 

def mod1_hist_equalize(input_img): 
    """ 
    Implements histogram equalization to enhance image contrast. 
     
    Theory: 
    - Redistributes pixel intensities across the full range [0, 255] 
    - Uses cumulative distribution function (CDF) 
    - Formula: new_value = (CDF[old_value] - CDF_min) * 255 / (total_pixels - CDF_min) 
    """ 
    if len(input_img.shape) == 3: 
        # Convert to YCrCb color space 
        ycrcb = cv2.cvtColor(input_img, cv2.COLOR_BGR2YCrCb) 
        # Apply equalization to Y channel only 
        ycrcb[:, :, 0] = cv2.equalizeHist(ycrcb[:, :, 0]) 
        result = cv2.cvtColor(ycrcb, cv2.COLOR_YCrCb2BGR) 
    else: 
        result = cv2.equalizeHist(input_img) 
    return result 

 
Key Features: 

 

Preserves color by operating on luminance channel (Y) 

Automatic parameter selection 

Effective for low-contrast images 
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Python

B. Spatial Domain Filtering 
Mean Filter (Averaging): 

 

def mod1_filter_mean(input_img, kernel_size=5): 
    """ 
    Applies mean filtering for noise reduction. 
     
    Theory: 
    - Replaces each pixel with average of neighbors 
    - Kernel: ones(k×k) / k² 
    - Trade-off: Noise reduction vs. edge blurring 
    """ 
    return cv2.blur(input_img, (kernel_size, kernel_size)) 

 
 

 
Median Filter: 

 

def mod1_filter_median(input_img, kernel_size=5): 
    """ 
    Applies median filtering for salt-and-pepper noise removal. 
     
    Theory: 
    - Non-linear filter replacing pixel with median of neighbors 
    - Preserves edges better than mean filter 
    - Effective for impulse noise 
    """ 
    return cv2.medianBlur(input_img, kernel_size) 
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Python

Laplacian Sharpening: 

 

def mod1_filter_laplacian(input_img): 
    """ 
    Sharpens image using Laplacian operator. 
     
    Theory: 
    - Second-order derivative operator: ∇²f = ∂²f/∂x² + ∂²f/∂y² 
    - Kernel: [[0,-1,0], [-1,4,-1], [0,-1,0]] 
    - Formula: sharpened = original + α × laplacian 
    """ 
    gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 
    laplacian = cv2.Laplacian(gray, cv2.CV_64F) 
    # Sharpen by adding laplacian to original 
    sharpened = cv2.convertScaleAbs(gray - laplacian) 
    return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR) 
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Python

C. Frequency Domain Filtering 
 
Low-Pass Filter: 
 

def mod1_filter_freq_lowpass(input_img, cutoff=30): 
    """ 
    Frequency domain low-pass filtering using FFT. 
     
    Theory: 
    - Fourier Transform: f(x,y) → F(u,v) 
    - Ideal LPF: H(u,v) = 1 if D(u,v) ≤ D₀, else 0 
    - Removes high-frequency noise 
    """ 
    gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 
     
    # Apply FFT 
    f_transform = np.fft.fft2(gray) 
    f_shift = np.fft.fftshift(f_transform) 
     
    # Create circular mask 
    rows, cols = gray.shape 
    crow, ccol = rows // 2, cols // 2 
    mask = np.zeros((rows, cols), dtype=np.uint8) 
    cv2.circle(mask, (ccol, crow), cutoff, 1, thickness=-1) 
     
    # Apply mask and inverse FFT 
    f_shift_filtered = f_shift * mask 
    f_inv_shift = np.fft.ifftshift(f_shift_filtered) 
    img_filtered = np.fft.ifft2(f_inv_shift) 
    img_filtered = np.abs(img_filtered) 
     
    return cv2.cvtColor(img_filtered.astype(np.uint8), cv2.COLOR_GRAY2BGR) 
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Python

Module 2: Image Segmentation and Edge Detection (SWAN HTET) 

Student 2: Edge Detection & Segmentation  
A. Edge Detection Algorithms 
 
Sobel Operator: 
 

def mod2_edge_sobel(input_img): 
    """ 
    Sobel edge detection using gradient operators. 
     
    Theory: 
    - First-order derivative approximation 
    - Gx = [[-1,0,1], [-2,0,2], [-1,0,1]]  (horizontal) 
    - Gy = [[-1,-2,-1], [0,0,0], [1,2,1]]  (vertical) 
    - Magnitude: |G| = √(Gx² + Gy²) 
    """ 
    gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 
    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) 
    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) 
    sobel = np.sqrt(sobelx**2 + sobely**2) 
    sobel = cv2.convertScaleAbs(sobel) 
    return cv2.cvtColor(sobel, cv2.COLOR_GRAY2BGR) 

 
 
Canny Edge Detection: 
 

def mod2_edge_canny(input_img, threshold1=100, threshold2=200): 
    """ 
    Multi-stage Canny edge detection algorithm. 
     
    Theory: 
    1. Gaussian smoothing (noise reduction) 
    2. Gradient calculation (Sobel) 
    3. Non-maximum suppression (thin edges) 
    4. Hysteresis thresholding (strong/weak edges) 
     
    Parameters: 
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Python

    - threshold1: Lower threshold for hysteresis 
    - threshold2: Upper threshold for hysteresis 
    """ 
    gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 
    edges = cv2.Canny(gray, threshold1, threshold2) 
    return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) 

 
 
Edge Comparison Feature: 
 

def mod2_edge_compare(input_img): 
    """ 
    Returns side-by-side comparison of three edge detection methods. 
     
    Returns: { 
        'compare_mode': True, 
        'methods': { 
            'sobel': sobel_result, 
            'prewitt': prewitt_result, 
            'canny': canny_result 
        } 
    } 
    """ 
    # Implementation allows visual comparison of algorithms 
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B. Segmentation Techniques 
 
Otsu's Thresholding: 
 

def mod2_threshold_otsu(input_img): 
    """ 
    Automatic threshold selection using Otsu's method. 
     
    Theory: 
    - Maximizes inter-class variance 
    - Minimizes intra-class variance 
    - Optimal threshold: argmax σ²_between(t) 
    """ 
    gray = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 
    return cv2.cvtColor(binary, cv2.COLOR_GRAY2BGR) 

 
Color Segmentation (HSV): 
 

def mod2_segment_hsv(input_img, lower_hsv, upper_hsv): 
    """ 
    Segments image based on HSV color range. 
     
    Theory: 
    - HSV color space more intuitive than RGB 
    - Hue: Color type (0-180°) 
    - Saturation: Color intensity (0-255) 
    - Value: Brightness (0-255) 
    """ 
    hsv = cv2.cvtColor(input_img, cv2.COLOR_BGR2HSV) 
    mask = cv2.inRange(hsv, np.array(lower_hsv), np.array(upper_hsv)) 
    result = cv2.bitwise_and(input_img, input_img, mask=mask) 
    return result 
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Region Growing: 
 

def mod2_segment_region_growing(input_img, seed_point, threshold=10): 
    """ 
    Region growing segmentation algorithm. 
     
    Theory: 
    1. Start from seed point 
    2. Add neighboring pixels if |I(neighbor) - I(seed)| < threshold 
    3. Iterate until no more pixels can be added 
    """ 
    # Flood fill implementation with intensity similarity 
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C. Morphological Operations 
 
Dilation & Erosion: 
 

def mod2_morph_dilate(input_img, kernel_size=5): 
    """ 
    Morphological dilation expands bright regions. 
     
    Theory: 
    - Dilation: (A ⊕ B) = {z | (B̂)z ∩ A ≠ ∅} 
    - Adds pixels to boundaries 
    - Fills holes and connects components 
    """ 
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) 
    return cv2.dilate(input_img, kernel, iterations=1) 
 
def mod2_morph_erode(input_img, kernel_size=5): 
    """ 
    Morphological erosion shrinks bright regions. 
     
    Theory: 
    - Erosion: (A ⊖ B) = {z | (B)z ⊆ A} 
    - Removes pixels from boundaries 
    - Removes noise and separates objects 
    """ 
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) 
    return cv2.erode(input_img, kernel, iterations=1) 

 
 
Opening & Closing: 
 

def mod2_morph_open(input_img, kernel_size=5): 
    """Opening = Erosion followed by Dilation""" 
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) 
    return cv2.morphologyEx(input_img, cv2.MORPH_OPEN, kernel) 
 
def mod2_morph_close(input_img, kernel_size=5): 
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    """Closing = Dilation followed by Erosion""" 
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) 
    return cv2.morphologyEx(input_img, cv2.MORPH_CLOSE, kernel) 
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Module 3: Geometric Transformations and Interpolation (ARKAR PYAE PHYO) 
Student 3: Geometric Transformations 
A. Basic Transformations 
 
Translation: 
 

def mod3_transform_translate(input_img, tx=50, ty=50, interpolation='bilinear'): 
    """ 
    Translates image by (tx, ty) pixels. 
     
    Theory: 
    - Translation matrix: T = [[1, 0, tx], [0, 1, ty]] 
    - New coordinates: (x', y') = (x + tx, y + ty) 
    """ 
    rows, cols = input_img.shape[:2] 
    M = np.float32([[1, 0, tx], [0, 1, ty]]) 
     
    interp_flag = { 
        'nearest': cv2.INTER_NEAREST, 
        'bilinear': cv2.INTER_LINEAR, 
        'bicubic': cv2.INTER_CUBIC 
    }.get(interpolation, cv2.INTER_LINEAR) 
     
    return cv2.warpAffine(input_img, M, (cols, rows), flags=interp_flag) 

 
 
Scaling: 
 

def mod3_transform_scale(input_img, scale_x=1.5, scale_y=1.5, interpolation='bilinear'): 
    """ 
    Scales image by factors scale_x and scale_y. 
     
    Theory: 
    - Scaling matrix: S = [[sx, 0, 0], [0, sy, 0]] 
    - New coordinates: (x', y') = (sx×x, sy×y) 
    - Interpolation required for non-integer scaling 
    """ 
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    rows, cols = input_img.shape[:2] 
    new_cols = int(cols * scale_x) 
    new_rows = int(rows * scale_y) 
     
    interp_flag = { 
        'nearest': cv2.INTER_NEAREST, 
        'bilinear': cv2.INTER_LINEAR, 
        'bicubic': cv2.INTER_CUBIC 
    }.get(interpolation, cv2.INTER_LINEAR) 
     
    return cv2.resize(input_img, (new_cols, new_rows), interpolation=interp_flag) 

 
 
Rotation: 
 

def mod3_transform_rotate(input_img, angle=45, interpolation='bilinear'): 
    """ 
    Rotates image around center by specified angle. 
     
    Theory: 
    - Rotation matrix: R = [[cos θ, -sin θ], [sin θ, cos θ]] 
    - Affine transform: combines rotation with translation to center 
    """ 
    rows, cols = input_img.shape[:2] 
    center = (cols / 2, rows / 2) 
     
    M = cv2.getRotationMatrix2D(center, angle, 1.0) 
     
    interp_flag = { 
        'nearest': cv2.INTER_NEAREST, 
        'bilinear': cv2.INTER_LINEAR, 
        'bicubic': cv2.INTER_CUBIC 
    }.get(interpolation, cv2.INTER_LINEAR) 
     
    return cv2.warpAffine(input_img, M, (cols, rows), flags=interp_flag) 
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B. Advanced Transformations 
 
Affine Transformation: 
 

def mod3_affine_transform(input_img): 
    """ 
    6-parameter affine transformation. 
     
    Theory: 
    - Matrix form: [x'] = [a b c] [x] 
                    [y']   [d e f] [y] 
                                   [1] 
    - Preserves parallelism but not angles/distances 
    - Used for: rotation, scaling, shearing, translation 
    """ 
    rows, cols = input_img.shape[:2] 
     
    # Define source and destination points 
    src_points = np.float32([[50,50], [200,50], [50,200]]) 
    dst_points = np.float32([[10,100], [200,50], [100,250]]) 
     
    # Calculate affine transform matrix 
    M = cv2.getAffineTransform(src_points, dst_points) 
     
    return cv2.warpAffine(input_img, M, (cols, rows)) 

 
 
Perspective Transformation: 
 

def mod3_perspective_transform(input_img): 
    """ 
    8-parameter perspective transformation. 
     
    Theory: 
    - Homogeneous coordinates: [x', y', w'] = H × [x, y, 1] 
    - Final coordinates: (x'/w', y'/w') 
    - Simulates 3D viewing angles 
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    - Used for: document scanning, billboard correction 
    """ 
    rows, cols = input_img.shape[:2] 
     
    # Define quadrilateral to rectangle mapping 
    src_points = np.float32([[0,0], [cols-1,0], [0,rows-1], [cols-1,rows-1]]) 
    dst_points = np.float32([[0,0], [300,0], [0,300], [300,300]]) 
     
    # Calculate perspective transform matrix 
    M = cv2.getPerspectiveTransform(src_points, dst_points) 
     
    return cv2.warpPerspective(input_img, M, (300, 300)) 

 
 
Shear Transformation: 
 

def mod3_shear_transform(input_img, shear_factor=0.5, axis='x'): 
    """ 
    Shear transformation along specified axis. 
     
    Theory: 
    - X-shear: [x'] = [1, shx] [x]  → x' = x + shx×y 
               [y']   [0, 1  ] [y]      y' = y 
     
    - Y-shear: [x'] = [1,   0] [x]  → x' = x 
               [y']   [shy, 1] [y]      y' = shy×x + y 
    """ 
    rows, cols = input_img.shape[:2] 
     
    if axis == 'x': 
        M = np.float32([[1, shear_factor, 0], [0, 1, 0]]) 
    else:  # axis == 'y' 
        M = np.float32([[1, 0, 0], [shear_factor, 1, 0]]) 
     
    return cv2.warpAffine(input_img, M, (cols + int(rows * abs(shear_factor)), rows)) 
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C. Interpolation Methods 
 
Interpolation Comparison: 
 

def mod3_interpolation_compare(input_img, scale=3.0): 
    """ 
    Compares three interpolation methods side-by-side. 
     
    Theory: 
    1. Nearest Neighbor: f(x,y) = f(round(x), round(y)) 
       - Fastest, blocky artifacts 
       - O(1) complexity 
     
    2. Bilinear: f(x,y) = weighted average of 4 neighbors 
       - Linear interpolation in both directions 
       - O(1) complexity, smooth results 
     
    3. Bicubic: f(x,y) = weighted average of 16 neighbors 
       - Cubic spline interpolation 
       - O(1) complexity, best quality 
    """ 
    rows, cols = input_img.shape[:2] 
    new_size = (int(cols * scale), int(rows * scale)) 
     
    nearest = cv2.resize(input_img, new_size, interpolation=cv2.INTER_NEAREST) 
    bilinear = cv2.resize(input_img, new_size, interpolation=cv2.INTER_LINEAR) 
    bicubic = cv2.resize(input_img, new_size, interpolation=cv2.INTER_CUBIC) 
     
    return { 
        'compare_mode': True, 
        'methods': { 
            'nearest': nearest, 
            'bilinear': bilinear, 
            'bicubic': bicubic 
        } 
    } 
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Results and Analysis 

https://www.stellarion.app/ 
 

GUI design 
 

 
Tool boxes handled by each student 
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Module 1: Image Enhancement 
 
Histogram Equalization 

 
 

YOLO Object Detection 
Detected 21 objects with confidence threshold 0.25.  

 
Before: Low contrast, washed-out colors 
After: Enhanced contrast, vibrant colors 
Quality: Excellent for underexposed images 
 
 
How Histogram Equalization Impacts Object Detection 
 
Histogram equalization (HE) significantly improves object detection in images with poor 
lighting by increasing the overall contrast. This process makes the features and edges of objects, 
like people and cars, stand out much more clearly from their background. As a result, the 
detection model can "see" and identify these objects more easily and accurately. 
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Spatial Filtering - Mean Filter 

 

YOLO Object Detection 
Detected 21 objects with confidence threshold 0.25 

 

Before: Sharp details, clear edges, and potential "salt & pepper" noise.  

After: Image is blurred and smoothed, fine details are lost.  

Quality: Effective for simple noise reduction, but at the cost of sharpness. 

 

 

How Spatial Filtering - Mean Filter Impacts Object Detection 

A mean filter (a common blurring technique) is generally harmful to object detection. It smooths 
the image by averaging pixel values, which blurs the sharp edges and fine textures that the model 
relies on to identify objects. This loss of critical detail makes it much harder for the model to 
"see" distinct object boundaries, often leading to lower confidence scores or completely missed 
detections.  
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Frequency Domain Filtering - Low-Pass Filter 
 

 
YOLO Object Detection 

Detected 0 objects with confidence threshold 0.25 
 
Before: Sharp image with clear edges, fine details, and textures.  
After: Very blurry image; all sharp edges and fine details are removed.  
Quality: Excellent for removing high-frequency noise, but results in significant blurring. 
 
 

How Frequency Domain Filtering - Low-Pass Filter Impacts Object Detection 

A low-pass filter is extremely damaging to object detection, as proven by the "0 objects 
detected" result. This filter works by removing high-frequency information, which includes the 
sharp edges, corners, and textures that models like YOLO absolutely need to identify and 
localize objects. By smoothing the image to such an extreme degree, it effectively erases all the 
critical features, leaving the model with no information to perform its task. 

 

 

 

 

27 



Module 2: Image Segmentation and Edge Detection 

Edge Detection - Sobel Edge 

YOLO Object Detection 
Detected 0 objects with confidence threshold 0.25 

 

Before: Normal image with color, texture, and shading.  

After: A black and white image showing only the outlines (edges) of objects.  

Quality: Excellent for isolating the boundaries and contours of objects in the scene. 

 

 

How Edge Detection - Sobel Filter Impacts Object Detection 

A Sobel filter is highly detrimental to standard object detection models like YOLO, as seen by 
the "0 objects detected" result. This filter strips away all color, texture, and shading information, 
leaving only the detected edges. Since the YOLO model was trained on complete, realistic 
images (not just outlines), this edge-only image is completely unrecognizable to it, making it 
impossible to identify any objects.  
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Image Segmentation - Otsu’s method 
 

 
YOLO Object Detection 

Detected 2 objects with confidence threshold 0.25 

 
Before: Full-color image with a wide range of brightness levels, textures, and details. After: A 
high-contrast, binary (pure black and white) image.  
Quality: Excellent for automatically separating an image into foreground and background based 
on brightness. 
 
 

How Image Segmentation - Otsu’s Method Impacts Object Detection 
 

Otsu's method is highly destructive for object detection, as shown by the drop from 21 detections 
(in the original) to only 2. This technique converts the image into a simple black-and-white 
silhouette, completely erasing all internal textures, colors, and shading (like the windows on a 
car or the folds in clothing). Because the YOLO model was trained on rich, full-detail images, it 
cannot recognize these abstract binary shapes, causing its performance to collapse.  
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Morphological Operations - Dilation 
 

 
YOLO Object Detection 

Detected 15 objects with confidence threshold 0.25 
 

 
 
Before: Original image with standard object shapes and boundaries.  
After: A grayscale image where bright areas have expanded, making objects appear "thicker" and 
filling in small dark holes.  
Quality: Effective for expanding object boundaries or connecting nearby components. 
 
 

How Morphological Operations - Dilation Impacts Object Detection 

Dilation can be unpredictable for object detection. By expanding the bright areas, it slightly 
distorts the true shapes of objects, making them "thicker" than they are. This can confuse the 
model, which was trained on precise shapes, and can also cause separate, nearby objects (like 
people in a crowd) to visually merge, leading to a drop in the number of successful detections.
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Module 3: Geometric Transformations and Interpolation 

Geometric Transformations - Rotate 45 degree 

 
YOLO Object Detection 

Detected 5 objects with confidence threshold 0.25 

 
Before: Normal, upright image with standard object orientation. After: Image is tilted 45 degrees, 
with content preserved but at a new angle. Quality: Preserves all image information but 
fundamentally changes its orientation. 
 
 
 

How Geometric Transformations - Rotate 45 degree Impacts Object Detection 

Rotating the image is highly detrimental to object detection, causing the detection count to 
plummet. Standard models like YOLO are trained on upright images and are not 
"rotation-invariant"—they don't expect to see cars and people at a 45-degree angle. This severe 
change in orientation makes the objects unrecognizable to the model, leading to a massive failure 
in detection.  
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Geometric Transformations - Distortion Correction 

 
YOLO Object Detection 

Detected 25 objects with confidence threshold 0.25 
 

 

 
Before: Image may have subtle lens distortion (e.g., barrel or pincushion) where straight lines 
appear curved.  
After: Image geometry is rectified, making straight lines straight and object shapes accurate.  
Quality: Excellent pre-processing step, crucial for images from wide-angle or fisheye lenses. 
 
 

How Geometric Transformations - Distortion Correction Impacts Object Detection 

Distortion correction is a highly beneficial pre-processing step for object detection. By 
"un-warping" the image, it ensures that all objects appear with their true, natural shape and scale, 
regardless of their position in the frame. This makes the model's job much easier, as it doesn't 
have to learn how to identify heavily distorted objects, leading to significantly more accurate and 
reliable detections (as shown by the high count of 25 objects).  
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Flip Operations - Horizontal and Vertical 

 

YOLO Object Detection 
Detected 2 objects with confidence threshold 0.25 

 

Before: Normal, upright image with correct orientation.  
After: Image is mirrored, in this case, vertically (upside-down).  
Quality: Preserves all pixel information but completely reverses its orientation. 
 
 

How Flip Operations Impact Object Detection 

While horizontal flipping is often a useful data augmentation step, vertical flipping (as shown 
here) is extremely destructive for object detection. Models like YOLO are trained to recognize 
objects in their natural, upright orientation. Seeing an upside-down car or person is completely 
unnatural and makes the object unrecognizable to the model, causing detection to fail almost 
entirely. 
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Challenges  
 
Challenge 1: Memory Management with Large Images 
Problem: 
Processing 4K images (3840×2160) caused memory overflow 
Server running out of RAM during FFT operations 
PM2 process crashes on multiple concurrent requests 
 
Challenge 2: Real-time Zoom Performance 
Problem: 
CSS transform: scale() caused blurry images 
Re-rendering entire canvas on each zoom step was slow 
Scroll/pan behavior inconsistent across browsers 
 
 
Challenge 3: Edge Detection Comparison Modal 
Problem: 
Displaying three images side-by-side exceeded viewport width 
Flickering during modal open/close 
Comparison images not synchronized when zooming 
​
Challenge 4: YOLO Model Loading Time 
Problem: 
YOLO model initialization took 3-5 seconds on first request 
Caused timeout on some browsers 
Delayed first object detection 
 
Challenge 5: Color Picker Integration for Segmentation 
Problem: 
Native HTML color picker didn't provide RGB/HSV values 
Manual RGB to HSV conversion had precision errors 
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Impact and Applications 
 
Educational Impact: 
 
Interactive platform for learning image processing 

Visual demonstrations of algorithm behavior 

Comparison tools for understanding trade-offs 

 
Potential Real-World Applications: 
 
Medical image enhancement (histogram equalization) 

Autonomous vehicle vision (edge detection, object detection) 

Document scanning (perspective correction, thresholding) 

Quality control (shape detection, measurement) 

Surveillance systems (object detection, tracking) 

Photo editing (filters, transformations, color adjustment)  
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Team Contributions 
 
Shared Responsibilities 
 
UI/UX Design: SWAN HTET 
Testing & Debugging: AUNG MYINT MYAT 
Documentation: ARKAR PYAE PHYO 
Deployment: ALL 
 
Report Prepared By: AUNG MYINT MYAT, SWAN HTET & ARKAR PYAE PHYO 
 
Submission Date: November 5, 2025 
 
Total Pages: 38 
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Conclusion 

 
This project culminated in a high-performance, production-ready web application that 
successfully integrates over 35 classical and deep learning image processing functions. The 
intuitive, real-time comparison tool serves as a powerful educational platform, effectively 
bridging the gap between textbook algorithms and hands-on, visual experimentation. The 
development process provided extensive learning in both theory and practice, from mastering 
OpenCV and frequency domain analysis to deploying YOLO models and managing a full-stack 
web environment. This work not only demonstrates technical excellence in building a responsive 
and robust application but also highlights the profound, real-world impact of these techniques 
across industries like autonomous navigation, medical imaging, and surveillance. 
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